RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2014 Volume 48, Issue 4, Pages 88–94 (Mi faa3164)

This article is cited in 5 papers

Brief communications

Homogenization of Elliptic Problems Depending on a Spectral Parameter

T. A. Suslina

St. Petersburg State University, Faculty of Physics

Abstract: In $L_2({\mathbb R}^d;{\mathbb C}^n)$ we consider a strongly elliptic operator $A_\varepsilon$ given by the differential expression $b({\mathbf D})^*g({\mathbf x}/\varepsilon)b({\mathbf D})$, $\varepsilon >0$. Here $g({\mathbf x})$ is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and $b({\mathbf D})$ is a first-order differential operator. Let ${\mathcal O}\subset {\mathbb R}^d$ be a bounded domain with boundary of class $C^{1,1}$. We also study the operators $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$ in $L_2({\mathcal O};{\mathbb C}^n)$ given by the same expression with Dirichlet or Neumann boundary conditions, respectively. We find approximations for the resolvents $(A_\varepsilon -\zeta I)^{-1}$, $(A_{D,\varepsilon} -\zeta I)^{-1}$, and $(A_{N,\varepsilon} -\zeta I)^{-1}$ in the operator ($L_2 \to L_2$)- and ($L_2 \to H^1$)-norms with error estimates depending on the parameters $\varepsilon$ and $\zeta$.

Keywords: homogenization of periodic differential operators, effective operator, corrector, operator error estimates.

UDC: 517.956.2

Received: 04.02.2014

DOI: 10.4213/faa3164


 English version:
Functional Analysis and Its Applications, 2014, 48:4, 309–313

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024