RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2015 Volume 49, Issue 4, Pages 90–94 (Mi faa3218)

This article is cited in 1 paper

Brief communications

Module and Hochschild Cohomology of Certain Semigroup Algebras

A. Shirinkalama, A. Purabbasa, M. Aminibc

a Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
c Department of Mathematics, Tarbiat Modares University

Abstract: We study the relation between the module and Hochschild cohomology groups of Banach algebras. We show that, for every commutative Banach $\mathcal{A}$-$\mathfrak{A}$-bimodule $X$ and every $k\in\mathbb{N}$, the seminormed spaces $\mathcal{H}^{k}_{\mathfrak{A}}(\mathcal{A},X^*)$ and $\mathcal{H}^k(\mathcal{A}/J,X^*)$ are isomorphic, where $J$ is a specific closed ideal of $\mathcal{A}$. As an example, we show that, for an inverse semigroup $S$ with the set of idempotents $E$, where $\ell^1(E)$ acts on $\ell^1(S)$ by multiplication on the right and trivially on the left, the first module cohomology $\mathcal{H}^1_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is trivial for each $n\in\mathbb{N}$, where $G_S$ is the maximal group homomorphic image of $S$. Also, the second module cohomology $\mathcal{H}^2_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is a Banach space.

Keywords: module cohomology group, Hochschild cohomology group, inverse semigroup, semigroup algebra.

UDC: 512.73

Received: 26.09.2014
Revised: 01.03.2015

DOI: 10.4213/faa3218


 English version:
Functional Analysis and Its Applications, 2015, 49:4, 315–318

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024