RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2016 Volume 50, Issue 1, Pages 85–89 (Mi faa3226)

This article is cited in 3 papers

Brief communications

On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder

N. N. Senik

Saint Petersburg State University

Abstract: We consider an operator $\mathcal{A}^{\varepsilon}$ on $L_{2}(\mathbb{R}^{d_{1}}\times\mathbb{T}^{d_{2}})$ ($d_{1}$ is positive, while $d_{2}$ can be zero) given by $\mathcal{A}^{\varepsilon}=-\operatorname{div} A(\varepsilon^{-1}x_{1},x_{2})\nabla$, where $A$ is periodic in the first variable and smooth in a sense in the second. We present approximations for $(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ and $\nabla(\mathcal{A}^{\varepsilon}-\mu)^{-1}$ (with appropriate $\mu$) in the operator norm when $\varepsilon$ is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.

Keywords: homogenization, operator error estimates, periodic differential operators, effective operator, corrector.

UDC: 517.956.2

Received: 13.10.2015

DOI: 10.4213/faa3226


 English version:
Functional Analysis and Its Applications, 2016, 50:1, 71–75

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025