RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2016 Volume 50, Issue 4, Pages 43–54 (Mi faa3253)

This article is cited in 19 papers

Functional Equations and Weierstrass Sigma-Functions

A. A. Illarionov

Khabarovsk Division of the Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russia

Abstract: It is proved that if an entire function $f\colon\mathbb{C}\to\mathbb{C}$ satisfies an equation of the form $f(x+y) f(x-y) = \alpha_1(x)\beta_1(y)+ \alpha_2(x)\beta_2(y) + \alpha_3(x)\beta_3(y)$, $x,y\in \mathbb{C}$, for some $\alpha_j,\beta_j\colon\mathbb{C}\to\mathbb{C}$ and there exist no $\tilde \alpha_j$ and $\tilde\beta_j$ for which $f(x+y) f(x-y) = \tilde\alpha_1(x)\tilde\beta_1(y)+ \tilde\alpha_2(x)\tilde\beta_2(y)$, then $f(z) = \exp(Az^2+ Bz + C) \cdot \sigma_\Gamma (z-z_1)\cdot \sigma_\Gamma (z-z_2)$, where $\Gamma$ is a lattice in $\mathbb{C}$; $\sigma_\Gamma$ is the Weierstrass sigma-function associated with $\Gamma$; $A,B,C,z_1,z_2\in\mathbb{C}$; and $z_1-z_2\notin (\frac{1}{2}\Gamma)\setminus \Gamma$.

Keywords: functional equation, Weierstrass sigma-function, elliptic function, addition theorem, trilinear functional equation.

UDC: 517.965+517.583

Received: 16.10.2016

DOI: 10.4213/faa3253


 English version:
Functional Analysis and Its Applications, 2016, 50:4, 281–290

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025