RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2016 Volume 50, Issue 4, Pages 91–96 (Mi faa3257)

This article is cited in 10 papers

Brief communications

Homogenization of Hyperbolic Equations

M. Dorodnyia, T. A. Suslina

a St. Petersburg State University, St. Petersburg, Russia

Abstract: We consider a self-adjoint matrix elliptic operator $A_\varepsilon$, $\varepsilon >0$, on $L_2({\mathbb R}^d;{\mathbb C}^n)$ given by the differential expression $b({\mathbf D})^* g({\mathbf x}/\varepsilon)b({\mathbf D})$. The matrix-valued function $g({\mathbf x})$ is bounded, positive definite, and periodic with respect to some lattice; $b({\mathbf D})$ is an $(m\times n)$-matrix first order differential operator such that $m \ge n$ and the symbol $b(\boldsymbol{\xi})$ has maximal rank. We study the operator cosine $\cos (\tau A^{1/2}_\varepsilon)$, where $\tau \in {\mathbb R}$. It is shown that, as $\varepsilon \to 0$, the operator $\cos (\tau A^{1/2}_\varepsilon)$ converges to $\cos(\tau (A^0)^{1/2})$ in the norm of operators acting from the Sobolev space $H^s({\mathbb R}^d;{\mathbb C}^n)$ (with a suitable $s$) to $L_2({\mathbb R}^d;{\mathbb C}^n)$. Here $A^0$ is the effective operator with constant coefficients. Sharp-order error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation $\partial^2_\tau {\mathbf u}_\varepsilon ({\mathbf x}, \tau) =- A_\varepsilon {\mathbf u}_\varepsilon({\mathbf x}, \tau)$.

Keywords: periodic differential operators, hyperbolic equations, homogenization, operator error estimates.

UDC: 517.956.2

Received: 14.05.2016

DOI: 10.4213/faa3257


 English version:
Functional Analysis and Its Applications, 2016, 50:4, 319–324

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024