RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2017 Volume 51, Issue 3, Pages 33–55 (Mi faa3472)

This article is cited in 11 papers

Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions

M. M. Malamudab, H. Neidhardtc, V. V. Pellerbd

a Institute of Applied Mathematics and Mechanics NAS of Ukraine, Donetsk, Ukraine
b People’s Friendship University of Russia (RUDN University), Moscow, Russia
c Institut für Angewandte Analysis und Stochastik, Berlin, Germany
d Department of Mathematics, Michigan State University, Michigan, USA

Abstract: In this paper we prove that for an arbitrary pair $\{T_1,T_0\}$ of contractions on Hilbert space with trace class difference, there exists a function $\boldsymbol\xi$ in $L^1(\mathbb{T})$ (called a spectral shift function for the pair $\{T_1,T_0\}$) such that the trace formula $\operatorname{trace}(f(T_1)-f(T_0))=\int_{\mathbb{T}} f'(\zeta)\boldsymbol{\xi}(\zeta)\,d\zeta$ holds for an arbitrary operator Lipschitz function $f$ analytic in the unit disk.

Keywords: contraction, dissipative operator, trace formulae, spectral shift function, operator Lipschitz functions, perturbation determinant.

UDC: 517.983.24

Received: 01.05.2017

DOI: 10.4213/faa3472


 English version:
Functional Analysis and Its Applications, 2017, 51:3, 185–203

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024