RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2018 Volume 52, Issue 1, Pages 80–84 (Mi faa3491)

This article is cited in 2 papers

Brief communications

Essential Spectrum of Schrödinger Operators on Periodic Graphs

V. S. Rabinovich

Instituto Politécnico Nacional, ESIME Zacatenco, Mexico City, the United Mexican States, Mexico

Abstract: We give a description of the essential spectra of unbounded operators $\mathcal{H}_{q}$ on $L^{2}(\Gamma)$ determined by the Schrödinger operators $-d^{2}/dx^{2}+q(x)$ on the edges of $\Gamma$ and general vertex conditions. We introduce a set of limit operators of $\mathcal{H}_{q}$ such that the essential spectrum of $\mathcal{H}_{q}$ is the union of the spectra of limit operators. We apply this result to describe the essential spectra of the operators $\mathcal{H}_{q}$ with periodic potentials perturbed by terms slowly oscillating at infinity.

Keywords: periodic graph, Schrödinger operator on a graph, limit operator, essential spectrum.

UDC: 517.95

Received: 13.01.2017

DOI: 10.4213/faa3491


 English version:
Functional Analysis and Its Applications, 2018, 52:1, 66–69

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024