RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2018 Volume 52, Issue 3, Pages 84–87 (Mi faa3507)

This article is cited in 6 papers

Brief communications

Hyperquasipolynomials for the Theta-Function

A. A. Illarionov, M. A. Romanov

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences

Abstract: Let $g$ be a linear combination with quasipolynomial coefficients of shifts of the Jacobi theta function and its derivatives in the argument. All entire functions $f\colon\mathbb{C}\to\mathbb{C}$ satisfying $f(x+y)g(x-y)=\alpha_1(x)\beta_1(y)+\cdots+\alpha_r(x)\beta_r(y)$ for some $r\in\mathbb{N}$ and $\alpha_j,\beta_j\colon\mathbb{C}\to\mathbb{C}$ are described.

Keywords: addition theorem, Jacobi theta function, Weierstrass sigma function, elliptic function, functional equation.

UDC: 517.965+517.583

Received: 14.07.2017

DOI: 10.4213/faa3507


 English version:
Functional Analysis and Its Applications, 2018, 52:3, 228–231

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024