RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2021 Volume 55, Issue 1, Pages 43–55 (Mi faa3805)

This article is cited in 6 papers

On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces

T. A. Garmanova, I. A. Sheipak

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: The norms of embedding operators $\mathring{W}^n_2[0,1]\hookrightarrow\mathring{W}^k_\infty[0,1]$ ($0\leqslant k\leqslant n-1$) of Sobolev spaces are considered. The least possible values of $A^2_{n,k}(x)$ in the inequalities $|f^{(k)}(x)|^2\leqslant A^2_{n,k}(x)\|f^{(n)}\|^2_{L_2[0,1]}$ ($f\in \mathring{W}^n_2[0,1]$) are studied. On the basis of relations between the functions $A^2_{n,k}(x)$ and primitives of the Legendre polynomials, properties of the maxima of the functions $A^2_{n,k}(x)$ are determined. It is shown that, for any $k$, the points of global maximum of the function $A^2_{n,k}$ on the interval $[0,1]$ is the point of local maximum nearest to the midpoint of this interval; in particular, for even $k$, such a point is $x=1/2$. For all even $k$, explicit expressions for the norms of embedding operators are found.

Keywords: Sobolev spaces, Legendre polynomials, embedding constants, estimates for derivatives .

UDC: 517.984+517.518.23

MSC: 26D10, 46E35

Received: 06.06.2020
Revised: 09.07.2020
Accepted: 14.07.2020

DOI: 10.4213/faa3805


 English version:
Functional Analysis and Its Applications, 2021, 55:1, 34–44

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024