RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2021 Volume 55, Issue 4, Pages 3–21 (Mi faa3854)

This article is cited in 1 paper

Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture

A. Álvareza, J. L. Bravoa, C. Christopherb, P. Mardešićcd

a Department of Mathematics, University of Extremadura
b School of Engineering, Computing and Mathematics, University of Plymouth
c Université de Bourgogne, Institut de Mathématiques de Bourgogne, Faculté des Sciences Mirande
d University of Zagreb, Department of Mathematics

Abstract: We study the analog of the classical infinitesimal center problem in the plane, but for zero cycles. We define the displacement function in this context and prove that it is identically zero if and only if the deformation has a composition factor. That is, we prove that here the composition conjecture is true, in contrast with the tangential center problem on zero cycles. Finally, we give examples of applications of our results.

Keywords: infinitesimal center, tangential center, Abelian integral, composition conjecture, monodromy.

UDC: 517.9

Received: 04.11.2020
Revised: 05.05.2021
Accepted: 26.05.2021

DOI: 10.4213/faa3854


 English version:
Functional Analysis and Its Applications, 2021, 55:4, 257–271

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024