RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2021 Volume 55, Issue 3, Pages 91–97 (Mi faa3866)

This article is cited in 5 papers

Brief communications

Rational hypergeometric identities

G. A. Sarkissianabc, V. P. Spiridonovab

a Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Region
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Faculty of Physics, Yerevan State University

Abstract: A special singular limit $\omega_1/\omega_2 \to 1$ is considered for the Faddeev modular quantum dilogarithm (hyperbolic gamma function) and the corresponding hyperbolic integrals. It brings a new class of hypergeometric identities associated with bilateral sums of Mellin–Barnes type integrals of particular Pochhammer symbol products.

Keywords: modular quantum dilogarithm, hyperbolic gamma function, hypergeometric identities.

UDC: 517.588

Received: 08.12.2020
Revised: 08.12.2020
Accepted: 01.02.2021

DOI: 10.4213/faa3866


 English version:
Functional Analysis and Its Applications, 2021, 55:3, 250–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024