RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2021 Volume 55, Issue 2, Pages 55–64 (Mi faa3873)

This article is cited in 3 papers

Hardy inequality for antisymmetric functions

T. Hoffmann-Ostenhofa, A. A. Laptevbc

a University of Vienna
b Imperial College London
c Sirius Mathematics Center

Abstract: We consider Hardy inequalities on antisymmetric functions. Such inequalities have substantially better constants. We show that they depend on the lowest degree of an antisymmetric harmonic polynomial. This allows us to obtain some Caffarelli–Kohn–Nirenberg-type inequalities that are useful for studying spectral properties of Schrödinger operators.

UDC: 517.518.28

Received: 05.01.2021
Revised: 02.03.2021
Accepted: 15.03.2021

DOI: 10.4213/faa3873


 English version:
Functional Analysis and Its Applications, 2021, 55:2, 122–129

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024