RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2023 Volume 57, Issue 1, Pages 24–37 (Mi faa3990)

This article is cited in 2 papers

Improved inequalities for numerical radius via cartesian decomposition

P. Bhuniaa, S. Janab, M. S. Moslehianc, K. Paula

a Department of Mathematics, Jadavpur University
b Department of Mathematics, Mahisadal Girls' College
c Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad

Abstract: We derive various lower bounds for the numerical radius $w(A)$ of a bounded linear operator $A$ defined on a complex Hilbert space, which improve the existing inequality $w^2(A)\geq \frac{1}{4}\|A^*A+AA^*\|$. In particular, for $r\geq 1$, we show that
$$ \tfrac{1}{4}\|A^*A+AA^*\|\leq\tfrac{1}{2}(\tfrac{1}{2}\|\operatorname{Re}(A)+\operatorname{Im}(A)\|^{2r}+\tfrac{1}{2}\|\operatorname{Re}(A)-\operatorname{Im}(A)\|^{2r})^{1/r} \leq w^{2}(A), $$
where $\operatorname{Re}(A)$ and $\operatorname{Im}(A)$ are the real and imaginary parts of $A$, respectively. Furthermore, we obtain upper bounds for $w^2(A)$ refining the well-known upper estimate $w^2(A)\leq \frac{1}{2}(w(A^2)+\|A\|^2)$. Criteria for $w(A)=\frac12\|A\|$ and for $w(A)=\frac{1}{2}\sqrt{\|A^*A+AA^*\|}$ are also given.

Keywords: numerical radius, operator norm, Cartesian decomposition, bounded linear operator.

Received: 26.02.2022
Revised: 13.10.2022
Accepted: 28.10.2022

DOI: 10.4213/faa3990


 English version:
Functional Analysis and Its Applications, 2023, 57:1, 18–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024