RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2022 Volume 56, Issue 3, Pages 93–99 (Mi faa4019)

This article is cited in 5 papers

Brief communications

Homogenization of the Schrödinger-type equations: operator estimates with correctors

T. A. Suslina

Saint Petersburg State University

Abstract: In $L_2(\mathbb R^d;\mathbb C^n)$ we consider a self-adjoint elliptic second-order differential operator $A_\varepsilon$. It is assumed that the coefficients of $A_\varepsilon$ are periodic and depend on $\mathbf x/\varepsilon$, where $\varepsilon>0$ is a small parameter. We study the behavior of the operator exponential $e^{-iA_\varepsilon\tau}$ for small $\varepsilon$ and $\tau\in\mathbb R$. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation $i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau) = - (A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)$ with initial data in a special class. For fixed $\tau$ and $\varepsilon\to 0$, the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ converges in $L_2(\mathbb R^d;\mathbb C^n)$ to the solution of the homogenized problem; the error is of order $O(\varepsilon)$. We obtain approximations for the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ in $L_2(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon^2)$ and in $H^1(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon)$. These approximations involve appropriate correctors. The dependence of errors on $\tau$ is traced.

Keywords: periodic differential operators, homogenization, operator error estimates, Schrödinger-type equations.

UDC: 517.95

Received: 06.06.2022
Revised: 06.06.2022
Accepted: 10.06.2022

DOI: 10.4213/faa4019


 English version:
Functional Analysis and Its Applications, 2022, 56:3, 229–234

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025