RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2023 Volume 57, Issue 3, Pages 89–112 (Mi faa4031)

This article is cited in 1 paper

Resurgence and partial theta series

L. Hanab, Y. Lic, D. Sauzinda, Sh. Sunae

a Department of Mathematics, Capital Normal University
b Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
c Chern Institute of Mathematics, Nankai University
d Observatoire de Paris, Centre National de la Recherche Scientifique, Paris Sciences et Lettres University
e Academy for Multidisciplinary Studies, Capital Normal University

Abstract: We consider partial theta series associated with periodic sequences of coefficients, namely, $\Theta(\tau):= \sum_{n>0} n^\nu f(n) e^{i\pi n^2\tau/M}$, where $\nu\in\mathbb{Z}_{\ge0}$ and $f\colon\mathbb{Z} \to \mathbb{C}$ is an $M$-periodic function. Such a function $\Theta$ is analytic in the half-plane $\{\operatorname{Im}\tau>0\}$ and in the asymptotics of $\Theta(\tau)$ as $\tau$ tends nontangentially to any $\alpha\in\mathbb{Q}$ a formal power series appears, which depends on the parity of $\nu$ and $f$. We discuss the summability and resurgence properties of these series; namely, we present explicit formulas for their formal Borel transforms and their consequences for the modularity properties of $\Theta$, or its “quantum modularity” properties in the sense of Zagier's recent theory. The discrete Fourier transform of $f$ plays an unexpected role and leads to a number-theoretic analogue of Écalle's “bridge equations.” The main thesis is: (quantum) modularity $=$ Stokes phenomenon $+$ discrete Fourier transform.

Keywords: resurgence, modularity, partial theta series, topological quantum field theory.

Received: 06.07.2022
Revised: 06.03.2023
Accepted: 09.03.2023

DOI: 10.4213/faa4031


 English version:
Functional Analysis and Its Applications, 2023, 57:3, 248–265

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024