RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2022 Volume 56, Issue 4, Pages 59–79 (Mi faa4035)

The superposition principle for Fokker–Planck–Kolmogorov equations with unbounded coefficients

T. I. Krasovitskii, S. V. Shaposhnikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The superposition principle delivers a probabilistic representation of a solution\break $\{\mu_t\}_{t\in[0, T]}$ of the Fokker–Planck–Kolmogorov equation $\partial_t\mu_t=L^{*}\mu_t$ in terms of a solution $P$ of the martingale problem with operator $L$. We generalize the superposition principle to the case of equations on a domain, examine the transformation of the measure $P$ and the operator $L$ under a change of variables, and obtain new conditions for the validity of the superposition principle under the assumption of the existence of a Lyapunov function for the unbounded part of the drift coefficient.

Keywords: Fokker–Planck–Kolmogorov equation, superposition principle.

UDC: 517.956.42

Received: 21.07.2022
Revised: 21.07.2022
Accepted: 08.09.2022

DOI: 10.4213/faa4035


 English version:
Functional Analysis and Its Applications, 2022, 56:4, 282–298

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024