RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2024 Volume 58, Issue 2, Pages 137–156 (Mi faa4106)

Continuous selection of approximate Monge solutions in the Kantorovich problem with a parameter

Svetlana Popovaabc

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
b NRU Higher School of Economics, Moscow, Russia
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Abstract: We consider the Kantorovich optimal transportation problem in the case where the cost function and marginal distributions continuously depend on a parameter with values in a metric space. We prove the existence of approximate optimal Monge mappings continuous with respect to the parameter.

Keywords: Kantorovich problem, Monge problem, optimal transportation problem, continuity with respect to a parameter.

MSC: 49Q22, 60B10

Received: 10.03.2023
Revised: 06.07.2023
Accepted: 22.07.2023

DOI: 10.4213/faa4106


 English version:
Functional Analysis and Its Applications, 2024, 58:2, 212–227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024