RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2023 Volume 57, Issue 2, Pages 106–110 (Mi faa4108)

This article is cited in 3 papers

Brief communications

Limit spectral measures of matrix distributions of metric triples

A. M. Vershikabc, F. V. Petrovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow

Abstract: The notion of the limit spectral measure of a metric triple (i.e., a metric measure space) is defined. If the metric is square integrable, then the limit spectral measure is deterministic and coincides with the spectrum of the integral operator on $L^2(\mu)$ with kernel $\rho$. An example in which there is no deterministic spectral measure is constructed.

Keywords: metric triples, spectra, limit measures, Cauchy distribution.

Received: 28.03.2023
Revised: 28.03.2023
Accepted: 02.04.2023

DOI: 10.4213/faa4108


 English version:
Functional Analysis and Its Applications, 2023, 57:2, 169–172

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025