RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2023 Volume 57, Issue 4, Pages 123–129 (Mi faa4149)

This article is cited in 5 papers

Brief communications

Homogenization of hyperbolic equations: operator estimates with correctors taken into account

M. A. Dorodnyi, T. A. Suslina

Saint Petersburg State University

Abstract: An elliptic second-order differential operator $A_\varepsilon=b(\mathbf{D})^*g(\mathbf{x}/\varepsilon)b(\mathbf{D})$ on $L_2(\mathbb{R}^d)$ is considered, where $\varepsilon >0$, $g(\mathbf{x})$ is a positive definite and bounded matrix-valued function periodic with respect to some lattice, and $b(\mathbf{D})$ is a matrix first-order differential operator. Approximations for small $\varepsilon$ of the operator-functions $\cos(\tau A_\varepsilon^{1/2})$ and $A_\varepsilon^{-1/2} \sin (\tau A_\varepsilon^{1/2})$ in various operator norms are obtained. The results can be applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation $\partial^2_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = - A_\varepsilon \mathbf{u}_\varepsilon(\mathbf{x},\tau)$.

Keywords: periodic differential operators, homogenization, hyperbolic equations, operator error estimates.

Received: 24.08.2023
Revised: 24.08.2023
Accepted: 05.09.2023

DOI: 10.4213/faa4149


 English version:
Functional Analysis and Its Applications, 2023, 57:4, 364–370

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024