RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2024 Volume 58, Issue 4, Pages 3–19 (Mi faa4188)

Multidimensional hyperbolic chaos

S. D. Glyzin, A. Yu. Kolesov

P.G. Demidov Yaroslavl State University, Centre of Integrable Systems, Yaroslavl, Russia

Abstract: A mathematical model of a new phenomenon – multidimensional hyperbolic chaos – is proposed. This model is a ring chain of $N \geq 2$ unidirectionally coupled maps of a two-dimensional torus $\mathbb{T}^{2}$ of "Arnold's cat" type. Some sufficient conditions (independent of $N$) are established, under which for any positive integer $N \geq 2$ the chain under consideration generates an Anosov diffeomorphism on the torus $\mathbb{T}^{2N}$.

Keywords: hyperbolicity, torus, topological conjugacy, structural stability, chaos.

MSC: 37D20

Received: 11.12.2023
Accepted: 08.04.2024

DOI: 10.4213/faa4188



© Steklov Math. Inst. of RAS, 2024