RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2024 Volume 58, Issue 2, Pages 100–114 (Mi faa4194)

The miracle of integer eigenvalues

Richard Kenyona, Maxim Kontsevichb, Oleg Ogievetskiicdefg, Cosmin Pohoatah, Will Sawini, Semen Shlosmandcegjk

a Yale University, New Haven, USA
b Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
c Université de Toulon
d Aix-Marseille Université
e CNRS – Center of Theoretical Physics
f P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow
g Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
h Emory University
i Princeton University, Princeton, USA
j Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
k Skolkovo Institute of Science and Technology

Abstract: For partially ordered sets $(X, \preccurlyeq)$, we consider the square matrices $M^{X}$ with rows and columns indexed by linear extensions of the partial order on $X$. Each entry $(M^{X})_{PQ}$ is a formal variable defined by a pedestal of the linear order $Q$ with respect to linear order $P$. We show that all eigenvalues of any such matrix $M^{X}$ are $\mathbb{Z}$-linear combinations of those variables.

Keywords: partially ordered set (poset), pedestal, filter, Young diagram.

MSC: 05E10

Received: 15.12.2023
Revised: 20.02.2024
Accepted: 14.03.2024

DOI: 10.4213/faa4194


 English version:
Functional Analysis and Its Applications, 2024, 58:2, 182–194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024