Homogenization of the Lévy-type operators
Elena Zhizhinaa,
Andrey Piatnitskiab,
Vladimir Sloushchc,
Tatiana Suslinac a Moscow Institute of Physics and Technology (National Research University), Higher School of Contemporary Mathematics, Moscow, Russia
b UiT The Arctic University of Norway, campus Narvik, Narvik, Norway
c Saint Petersburg State University, St. Petersburg, Russia
Abstract:
In
$L_2(\mathbb R^d)$, we consider a selfadjoint operator
${\mathbb A}_\varepsilon$,
$\varepsilon >0$, of the form
$$
({\mathbb A}_\varepsilon u) (\mathbf{x})
=\int_{\mathbb R^d} \mu\biggl(\frac{\mathbf{x}}{\varepsilon},\frac{\mathbf{y}}{\varepsilon}\biggr) \frac{(u(\mathbf{x}) -u(\mathbf{y}))}{| \mathbf{x}-\mathbf{y} |^{d+\alpha}}\,d \mathbf{y},
$$
where
$0< \alpha < 2$. It is assumed that a function
$\mu(\mathbf{x},\mathbf{y})$ is bounded, positive definite, periodic in each variable, and is such that $\mu(\mathbf{x},\mathbf{y})=\mu(\mathbf{y},\mathbf{x})$. A rigorous definition of the operator
${\mathbb A}_\varepsilon$ is given in terms of the corresponding quadratic form. It is proved that the resolvent
$({\mathbb A}_\varepsilon+I)^{-1}$ converges in the operator norm on
$L_2(\mathbb R^d)$ to the operator
$({\mathbb A}^0+I)^{-1}$ as
$\varepsilon\to 0$. Here,
${\mathbb A}^0$ is an effective operator of the same form with the constant coefficient
$\mu^0$ equal to the mean value of
$\mu(\mathbf{x},\mathbf{y})$. We obtain an error estimate of order
$O(\varepsilon^\alpha)$ for
$0< \alpha < 1$, $O(\varepsilon (1+| \operatorname{ln} \varepsilon|)^2)$ for
$ \alpha=1$,
and
$O(\varepsilon^{2- \alpha})$ for
$1< \alpha < 2$.
In the case where
$1< \alpha < 2$, the result is refined by taking the correctors into account.
Keywords:
Lévy-type operators, homogenization, operator error estimates.
MSC: 35B27 Received: 29.10.2024
Accepted: 27.12.2024
DOI:
10.4213/faa4267