RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2025 Volume 59, Issue 3, Pages 41–48 (Mi faa4267)

Homogenization of the Lévy-type operators

Elena Zhizhinaa, Andrey Piatnitskiab, Vladimir Sloushchc, Tatiana Suslinac

a Moscow Institute of Physics and Technology (National Research University), Higher School of Contemporary Mathematics, Moscow, Russia
b UiT The Arctic University of Norway, campus Narvik, Narvik, Norway
c Saint Petersburg State University, St. Petersburg, Russia

Abstract: In $L_2(\mathbb R^d)$, we consider a selfadjoint operator ${\mathbb A}_\varepsilon$, $\varepsilon >0$, of the form
$$ ({\mathbb A}_\varepsilon u) (\mathbf{x}) =\int_{\mathbb R^d} \mu\biggl(\frac{\mathbf{x}}{\varepsilon},\frac{\mathbf{y}}{\varepsilon}\biggr) \frac{(u(\mathbf{x}) -u(\mathbf{y}))}{| \mathbf{x}-\mathbf{y} |^{d+\alpha}}\,d \mathbf{y}, $$
where $0< \alpha < 2$. It is assumed that a function $\mu(\mathbf{x},\mathbf{y})$ is bounded, positive definite, periodic in each variable, and is such that $\mu(\mathbf{x},\mathbf{y})=\mu(\mathbf{y},\mathbf{x})$. A rigorous definition of the operator ${\mathbb A}_\varepsilon$ is given in terms of the corresponding quadratic form. It is proved that the resolvent $({\mathbb A}_\varepsilon+I)^{-1}$ converges in the operator norm on $L_2(\mathbb R^d)$ to the operator $({\mathbb A}^0+I)^{-1}$ as $\varepsilon\to 0$. Here, ${\mathbb A}^0$ is an effective operator of the same form with the constant coefficient $\mu^0$ equal to the mean value of $\mu(\mathbf{x},\mathbf{y})$. We obtain an error estimate of order $O(\varepsilon^\alpha)$ for $0< \alpha < 1$, $O(\varepsilon (1+| \operatorname{ln} \varepsilon|)^2)$ for $ \alpha=1$, and $O(\varepsilon^{2- \alpha})$ for $1< \alpha < 2$. In the case where $1< \alpha < 2$, the result is refined by taking the correctors into account.

Keywords: Lévy-type operators, homogenization, operator error estimates.

MSC: 35B27

Received: 29.10.2024
Accepted: 27.12.2024

DOI: 10.4213/faa4267


 English version:
Functional Analysis and Its Applications, 2025, 59:3, 251–257


© Steklov Math. Inst. of RAS, 2025