RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2006 Volume 40, Issue 4, Pages 49–64 (Mi faa848)

This article is cited in 1 paper

Stability of Approximation Under the Action of Singular Integral Operators

S. V. Kislyakova, N. Ya. Kruglyakb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Luleå University of Technology

Abstract: Let $T$ be a singular integral operator, and let $0<\alpha<1$. If $t>0$ and the functions $f$ and $Tf$ are both integrable, then there exists a function $g\in B_{\operatorname{Lip}_{\alpha}}(ct)$ such that
$$ \|f-g\|_{L^1}\le C\operatorname{dist}_{L^1}(f,B_{\operatorname{Lip}_{\alpha}}(t)) $$
and
$$ \|Tf-Tg\|_{L^1}\le C\|f-g\|_{L^1}+\operatorname{dist}_{L^1} (Tf,B_{\operatorname{Lip}_{\alpha}}(t)). $$
(Here $B_X(\tau)$ is the ball of radius $\tau$ and centered at zero in the space $X$; the constants $C$ and $c$ do not depend on $t$ and $f$.) The function $g$ is independent of $T$ and is constructed starting with $f$ by a nearly algorithmic procedure resembling the classical Calderón–Zygmund decomposition.

Keywords: Calderón–Zygmund decomposition, singular integral operator, covering theorem, wavelets.

UDC: 517.9

Received: 11.08.2006

DOI: 10.4213/faa848


 English version:
Functional Analysis and Its Applications, 2006, 40:4, 285–297

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024