RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2006 Volume 40, Issue 4, Pages 72–82 (Mi faa851)

This article is cited in 1 paper

The Growth Irregularity of Slowly Growing Entire Functions

I. V. Ostrovskiiab, A. E. Üreyenb

a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
b Bilkent University

Abstract: We show that entire transcendental functions $f$ satisfying
$$ \log M(r,f)=o(\log^2r),\qquad r\to\infty\quad (M(r,f):=\max_{|z|=r}|f(z)|) $$
necessarily have growth irregularity, which increases as the growth diminishes. In particular, if $1<p<2$, then the asymptotics
$$ \log M(r,f)=\log^pr+o(\log^{2-p}r),\qquad r\to\infty, $$
is impossible. It becomes possible if "$o$" is replaced by "$O$."

Keywords: Clunie–Kövari theorem, Erdös–Kövari theorem, Hayman convexity theorem, maximum term, Levin's strong proximate order.

UDC: 517.53

Received: 15.03.2006

DOI: 10.4213/faa851


 English version:
Functional Analysis and Its Applications, 2006, 40:4, 304–312

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025