RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2005 Volume 39, Issue 4, Pages 86–89 (Mi faa90)

This article is cited in 7 papers

Brief communications

On Degrees of Growth of Finitely Generated Groups

A. G. Ershler

CNRS, Université Lille 1, UFR de Mathématiques

Abstract: We prove that for an arbitrary function $\rho$ of subexponential growth there exists a group $G$ of intermediate growth whose growth function satisfies the inequality $v_{G,S}(n)\ge\rho(n)$ for all $n$. For every prime $p$, one can take $G$ to be a $p$-group; one can also take a torsion-free group $G$. We also discuss some generalizations of this assertion.

Keywords: growth of groups, intermediate growth, Grigorchuk group.

UDC: 512.54

Received: 07.02.2004

DOI: 10.4213/faa90


 English version:
Functional Analysis and Its Applications, 2005, 39:4, 317–320

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025