RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2004 Volume 38, Issue 1, Pages 81–82 (Mi faa98)

This article is cited in 8 papers

Brief communications

Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions

O. N. Zabroda, I. B. Simonenko

Rostov State University, Faculty of Mechanics and Mathematics

Abstract: We study the asymptotic invertibility as $n\to+\infty$ of matrices of the form $\alpha_{kj}^{(n)}=a(k/n,j/n,k-j)$ and $\beta_{kj}^{(n)}=b(k/E(n),j/E(n),k-j)$, where $a$ and $b$ are functions defined on the sets $[0,1]\times[0,1]\times\mathbb{Z}$ and $[0,+\infty)\times[0,+\infty)\times\mathbb{Z}$, respectively, $E(n)\to+\infty$, and $n/E(n)\to+\infty$. The joint asymptotic behavior of the spectrum of these matrices is analyzed.

Keywords: asymptotic invertibility, matrix, operator, spectrum.

UDC: 517.9

Received: 01.11.2002

DOI: 10.4213/faa98


 English version:
Functional Analysis and Its Applications, 2004, 38:1, 65–66

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024