Abstract:
The paper addresses the problem of searching for methods that can control, suppress, and attenuate explosive and detonation processes in homogeneous and heterogeneous media (mixtures of reactive gases and inert species). The analysis is performed by analytical and numerical methods. The problem of detonation suppression in a mixture of reactive gases and inert species (argon and sand particles) in a one-dimensional unsteady flow is formulated, and its solution is given. The effect of the particle diameter and concentration on the detonation velocity is determined; the parameters of the detonation wave in a stoichiometric hydrogen-oxygen mixture diluted by a chemically inert gas (argon) and particles is determined. The influence of the initial parameters of the mixture on the possibility of detonation suppression by inert particles is studied. It is shown that the detonation velocity substantially decreases with increasing volume fraction of particles. A decrease in the particle size with an unchanged volume fraction is also found to reduce the detonation velocity.
Keywords:detonation suppression, mathematical modeling, mixture of reactive gases and inert particles.