Abstract:
Molecular dynamics modeling of melting of aluminum nanoparticles with the use of the DL$\_$POLY simulation package and two types of parametrization of the embedded atom potential is performed. Predicted melting temperatures are compared with available experimental and numerical data. A significant scatter of data (melting temperatures as functions of the nanoparticle size) is noted. The previously proposed semi-empirical model of molecular dynamics for the description of the thermal history of the aluminum nanoparticle is justified. The specific heats obtained in this study ensure a qualitatively correct description of their dependence on temperature and on the crystal rib size.
Keywords:molecular dynamics, nanoparticles, melting, specific heat.