Abstract:
Results of investigation of the combustion of mixtures of ultrafine aluminum and boron powders (the oxidizer is air) are presented. It is shown that the combustion proceeds in two steps, which differ in temperature. The addition of boron influences the concentrations of AlN, residual Al, and $\alpha$-Al$_2$O$_3$ in the end products of combustion of mixtures of ultrafine powders of Al and B in air. For a fixed sample weight of 4 g, the maximum AlN content is observed in the combustion of an Al + 20% B mixture of ultrafine powders, and the combustion temperature is also maximum in this case. When the sample weight is smaller than a certain critical value, the combustion proceeds in one step. Increasing the sample weight of the starting mixture of ultrafine powders of Al and B leads to an increase in the AlN content in the combustion products with simultaneous rise in the combustion temperature. A considerable part of the combustion products stabilizes as acicular polycrystals of micron and submicron sizes formed with participation of a gas phase during combustion.