Abstract:
The effect of high-temperature shock compression conditions on the degree of transformation of silicon nitride into a cubic $\gamma$-modification at pressures of 36 and 50 GPa in planar recovery ampoules is studied. The x-ray Rietveld method is used to determine the quantitative phase composition before and after shock compression. The temperature reached during compression and the residual temperature after unloading are calculated. It is shown that the use of high-temperature shock compression at 36 GPa provides a higher transformation level compared to the classical approach based on the addition of copper powder into the samples.