Abstract:
Experimental data on heat and mass transfer in a boundary layer upon ethanol evaporation from a porous surface and its combustion in an air flow are reported. It has been established that variations in the flow velocity in the flow core weakly affect the temperature and concentration of substances on the reactor wall. The flame temperature and the distribution of mass flows over the wall depend essentially on the flow velocity. It has been observed that heat-and mass-transfer coefficients decrease in combustion. The representation of experimental data using overall enthalpies and generalized concentrations as transfer potentials suggests an analogy between the processes of heat and mass transfer in a reacting boundary layer.