RUS  ENG
Full version
JOURNALS // Fizika Goreniya i Vzryva // Archive

Fizika Goreniya i Vzryva, 2016 Volume 52, Issue 6, Pages 94–103 (Mi fgv369)

This article is cited in 14 papers

Detonation burning of anthracite and lignite particles in a flow-type radial combustor

F. A. Bykovskiia, S. A. Zhdanab, E. F. Vedernikova, Yu. A. Zholobovb

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk, 630090, Russia

Abstract: Regimes of continuous spin detonation of anthracite and lignite particles in an air flow in a radial vortex combustor 500 mm in diameter with a constant (along the radius cross-sectional area are studied. Crushed coal with a particle size of 1–12 $\mu$m is used. For transporting coal into the combustor and promoting the chemical reaction on the surface of solid particles, hydrogen or syngas was added in the ratio CO/Í$_2$ = 1/1, 1/2, or 1/3. Continuous spin detonation of two-phase mixtures of fine anthracite and lignite particles and air with addition of hydrogen up to 4% of the coal consumption rate is obtained for the first time. The amount of syngas added to coal increases with decreasing fraction of hydrogen in the syngas: 14, 21, and 27% for anthracite and 11, 20, and 29% for lignite at ÑÎ/Í$_2$ = 1/3, 1/2, and 1/1, respectively. The detonation wave structure and the flow in their vicinity are not principally different from those observed previously for long-flame hard coal and charcoal. Higher detonation velocities are observed for more energy-intensive coal (anthracite). A higher pressure is obtained near the cylindrical wall of the combustor in cold runs as compared to detonation in the case with identical flow rates of the coal-air mixtures.

Keywords: continuous spin detonation, plane-radial vortex chamber, hard coal, flow structure.

UDC: 534.2, 546.2

Received: 14.11.2015

DOI: 10.15372/FGV20160610


 English version:
Combustion, Explosion and Shock Waves, 2016, 52:6, 703–712

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024