Abstract:
This paper presents the results of a study carried out using numerical simulation of flame front dynamics in a gaseous reacting mixture, including those in the presence of a suspended phase of liquid microdroplets. It is shown that the local effect on the flame front is one of the leading factors determining the development of combustion. Thus, the local dynamic effect of relatively large droplets on the flame front contributes to its curvature, which, in turn, determines the corresponding local acceleration of individual sections of the front. Further unstable growth of such perturbations leads to an integral acceleration of the flame. At the same time, local stretching by the flow in depleted compositions can lead to combustion extinction.