RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2007 Volume 13, Issue 4, Pages 165–197 (Mi fpm1069)

This article is cited in 15 papers

Length computation of matrix subalgebras of special type

O. V. Markova

M. V. Lomonosov Moscow State University

Abstract: Let $\mathbb F$ be a field and let $\mathcal A$ be a finite-dimensional $\mathbb F$-algebra. We define the length of a finite generating set of this algebra as the smallest number $k$ such that words of length not greater than $k$ generate $\mathcal A$ as a vector space, and the length of the algebra is the maximum of the lengths of its generating sets. In this article, we give a series of examples of length computation for matrix subalgebras. In particular, we evaluate the lengths of certain upper triangular matrix subalgebras and their direct sums, and the lengths of classical commutative matrix subalgebras. The connection between the length of an algebra and the lengths of its subalgebras is also studied.

UDC: 512.643


 English version:
Journal of Mathematical Sciences (New York), 2008, 155:6, 908–931

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025