RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2008 Volume 14, Issue 4, Pages 181–192 (Mi fpm1133)

This article is cited in 3 papers

Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code

V. T. Markov, A. A. Nechaev, S. Skazhenik, E. O. Tveritinov

M. V. Lomonosov Moscow State University

Abstract: In 1998, E. Couselo, S. Gonzalez, V. Markov, and A. Nechaev defined the recursive codes and obtained some results that allowed one to conjecture the existence of recursive MDS-codes of dimension 2 and length 4 over any finite alphabet of cardinality $q\notin\{2,6\}$. This conjecture remained open only for $q\in\{14,18,26,42\}$. It is shown in this paper that there exist such codes for $q=42$. We used a new construction, that of pseudogeometry with clusters.

UDC: 512.548.7+519.143+514.146.5


 English version:
Journal of Mathematical Sciences (New York), 2009, 163:5, 563–571

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024