RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2008 Volume 14, Issue 6, Pages 193–209 (Mi fpm1165)

This article is cited in 3 papers

Symbol algebras and cyclicity of algebras after a scalar extension

U. Rehmanna, S. V. Tikhonovb, V. I. Yanchevskiib

a Bielefeld University, Germany
b Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract: For a field $F$ and a family of central simple $F$-algebras we prove that there exists a regular field extension $E/F$ preserving indices of $F$-algebras such that all the algebras from the family are cyclic after scalar extension by $E$. Let $\mathcal A$ be a central simple algebra over a field $F$ of degree $n$ with a primitive $n$th root of unity $\rho_n$. We construct a quasi-affine $F$-variety $\mathrm{Symb}(\mathcal A)$ such that for a field extension $L/F$ $\mathrm{Symb}(\mathcal A)$ has an $L$-rational point if and only if $\mathcal A\otimes_FL$ is a symbol algebra. Let $\mathcal A$ be a central simple algebra over a field $F$ of degree $n$ and $K/F$ be a cyclic field extension of degree $n$. We construct a quasi-affine $F$-variety $C(\mathcal A,K)$ such that, for a field extension $L/F$ with the property $[KL:L]=[K:F]$, the variety $C(\mathcal A,K)$ has an $L$-rational point if and only if $KL$ is a subfield of $\mathcal A\otimes_FL$.

UDC: 512.7


 English version:
Journal of Mathematical Sciences (New York), 2010, 164:1, 131–142

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025