RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2008 Volume 14, Issue 7, Pages 15–21 (Mi fpm1169)

This article is cited in 5 papers

The ranks of central unit groups of integral group rings of alternating groups

R. Zh. Aleev, A. V. Kargapolov, V. V. Sokolov

Southern Ural State University

Abstract: Let $G$ be a finite group and $\mathrm U(Z(\mathbf ZG))$ be the group of units of the center $Z(\mathbf ZG)$ of the integral group ring $\mathbf ZG$ (the central unit group of the ring $\mathbf ZG$). The purpose of the present work is to study the ranks $r_n$ of groups $\mathrm U(Z(\mathbf Z\mathrm A_n)$, i.e., of central unit groups of integral group rings of alternating groups $\mathrm A_n$. We shall find all values $n$ for $r_n=1$ and propose an approach how to describe the groups $\mathrm U(Z(\mathbf Z\mathrm A_n))$ in these cases, and we will present some results of calculations of $r_n$ for $n\leq600$.

UDC: 512.552.7+511.622+512.547.214


 English version:
Journal of Mathematical Sciences (New York), 2010, 164:2, 163–167

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024