RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2008 Volume 14, Issue 7, Pages 53–62 (Mi fpm1173)

Regev's and Amitsur's conjectures for codimensions of generalized polynomial identities

A. S. Gordienko

M. V. Lomonosov Moscow State University

Abstract: Let $A$ be a finite-dimensional associative algebra over a field of characteristic 0. Then there exist $C\in\mathbb Q_+$ and $t\in\mathbb Z_+$ such that $\mathrm{gc}_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=\mathrm{PI}\exp(A)$. In particular, Amitsur's and Regev's conjectures hold for the codimensions $\mathrm{gc}_n(A)$ of generalized polynomial identities.

UDC: 512.552.4


 English version:
Journal of Mathematical Sciences (New York), 2010, 164:2, 188–194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025