RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2009 Volume 15, Issue 1, Pages 117–124 (Mi fpm1200)

This article is cited in 3 papers

On invariants of modular free Lie algebras

V. M. Petrogradsky, A. A. Smirnov

Ulyanovsk State University

Abstract: Suppose that $L(X)$ is a free Lie algebra of finite rank over a field of positive characteristic. Let $G$ be a nontrivial finite group of homogeneous automorphisms of $L(X)$. It is known that the subalgebra of invariants $H=L^G$ is infinitely generated. Our goal is to describe how big its free generating set is. Let $Y=\bigcup_{n=1}^\infty Y_n$ be a homogeneous free generating set of $H$, where elements of $Y_n$ are of degree $n$ with respect to $X$. We describe the growth of the generating function of $Y$ and prove that $|Y_n|$ grow exponentially.

UDC: 512.55


 English version:
Journal of Mathematical Sciences (New York), 2010, 166:6, 767–772

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025