RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1995 Volume 1, Issue 4, Pages 1125–1128 (Mi fpm123)

Short communications

On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity

V. S. Serov

M. V. Lomonosov Moscow State University

Abstract: In this work we prove the convergence in the norm of the Sobolev spaces $H^s(\mathbb R^{N})$ of the spectral expansions corresponding to the self-adjont extansions in $L^2(\mathbb R^{N})$ of the operators in the following way:
$$ A(x,D)=P(D)+Q(x), $$
where $P(D)$ is the self-adjont elliptic operator with constant coefficients and of order $m$ and real potential $Q(x)$ belongs to Kato space. As a consequence of this result we have the uniform convergence of these expansions for the case $m>\frac{N}{2}$.

UDC: 517.95

Received: 01.02.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025