RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 3, Pages 135–148 (Mi fpm1324)

This article is cited in 15 papers

On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras

A. V. Grishin, L. M. Tsybulya, A. A. Shokola

Moscow State Pedagogical University

Abstract: The purpose of this work is to obtain the commutator relations and Frobenius relations in a relatively free algebra $F^{(l)}$ specified by the identity $[x_1,\dots,x_l]=0$ over a field of characteristic $p>0$. These relations for $l>3$ are analogous to the relations in the algebra $F^{(3)}$ and are applied to the $T$-spaces in the algebra $F^{(l)}$. In order to study the relations in $F^{(l)}$ in more detail, we construct a model algebra analogous to the Grassmann algebra.

UDC: 512.552


 English version:
Journal of Mathematical Sciences (New York), 2011, 177:6, 868–877

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025