RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 6, Pages 167–172 (Mi fpm1358)

On the transcendence of moduli of the Jacobian elliptic functions

Ya. M. Kholyavka

Ivan Franko National University of L'viv, Ukraine

Abstract: Let $\mathrm{sn}_1z$ and $\mathrm{sn}_2z$ be the Jacobian elliptic functions of moduli $\varkappa_1$ and $\varkappa_2$, $0<\varkappa_1^2<1$, $0<\varkappa_2^2<1$, $\tau_1$ and $\tau_2$ be the values of the modular variable, $\theta_3(\tau_1)$ and $\theta_3(\tau_2)$ be the theta constants. In this paper, the set $\varkappa_1$, $\varkappa_2$, $\theta_3(\tau_1)$, and $\theta_3(\tau_2)$ is shown to contain a transcendental number, provided that $\tau_1/\tau_2$ is irrational.

UDC: 511.3


 English version:
Journal of Mathematical Sciences (New York), 2012, 182:4, 560–564

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025