RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2012 Volume 17, Issue 1, Pages 169–188 (Mi fpm1395)

This article is cited in 4 papers

Classification of matrix subalgebras of length 1

O. V. Markova

M. V. Lomonosov Moscow State University

Abstract: We define the length of a finite system of generators of a given algebra $\mathcal A$ as the smallest number $k$ such that words of length not greater than $k$ generate $\mathcal A$ as a vector space, and the length of the algebra is the maximum of the lengths of its systems of generators. In this paper, we obtain a classification of matrix subalgebras of length 1 up to conjugation. In particular, we describe arbitrary commutative matrix subalgebras of length 1, as well as those that are maximal with respect to inclusion.

UDC: 512.643


 English version:
Journal of Mathematical Sciences (New York), 2012, 185:3, 458–472

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025