RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2012 Volume 17, Issue 3, Pages 85–96 (Mi fpm1415)

This article is cited in 2 papers

Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable

V. V. Sidorov

Vyatka State University of Humanities

Abstract: In this paper, we describe automorphisms of the lattice $\mathbb A$ of all subalgebras of the semiring $\mathbb R^+[x]$ of polynomials in one variable over the semifield $\mathbb R^+$ of nonnegative real numbers. It is proved that any automorphism of the lattice $\mathbb A$ is generated by an automorphism of the semiring $\mathbb R^+[x]$ that is induced by a substitution $x\mapsto px$ for some positive real number $p$. It follows that the automorphism group of the lattice $\mathbb A$ is isomorphic to the group of all positive real numbers with multiplication. A technique of unigenerated subalgebras is applied.

UDC: 512.556


 English version:
Journal of Mathematical Sciences (New York), 2012, 187:2, 169–176

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024