Abstract:
Various Cartesian models of central power fields with quadratic dynamics are studied. These examples lead the reader to comprehension of basic aspects of the differential algebraic-geometrical Brahe–Descartes–Wotton theory, which embraces central power fields whose dynamics is composed of flat affine algebraic curves of degree at most $N$ ($N=1,2,3,\dots$). When $N=2$, a quadratic rolling simplex law is proved by purely algebraic means.