RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2012 Volume 17, Issue 8, Pages 31–34 (Mi fpm1468)

On a problem related to homomorphism groups in the theory of Abelian groups

S. Ya. Grinshpon

Tomsk State University

Abstract: In this paper, for any reduced Abelian group $A$ whose torsion-free rank is infinite, we construct a countable set $\mathfrak A(A)$ of Abelian groups connected with the group $A$ in a definite way and such that for any two different groups $B$ and $C$ from the set $\mathfrak A(A)$ the groups $B$ and $C$ are isomorphic but $\operatorname{Hom}(B, X)\cong\operatorname{Hom}(C, X)$ for any Abelian group $X$. The construction of such a set of Abelian groups is closely connected with Problem 34 from L. Fuchs' book “Infinite Abelian Groups”, Vol. 1.

UDC: 512.541


 English version:
Journal of Mathematical Sciences (New York), 2014, 197:5, 602–604

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025