RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2013 Volume 18, Issue 1, Pages 35–44 (Mi fpm1486)

An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic

V. A. Bragin, E. I. Bunina

Lomonosov Moscow State University, Moscow, Russia

Abstract: It is proved that the property of two models to be equivalent in the $n$th order logic is definable in the $(n+1)$th order logic. Basing on this fact, there is given an (nonconstructive) “example” of two $n$-order equivalent cardinal numbers that are not $(n+1)$-order equivalent.

UDC: 510.67+512.563+512.54


 English version:
Journal of Mathematical Sciences (New York), 2014, 201:4, 431–437

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025