RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2013 Volume 18, Issue 1, Pages 57–62 (Mi fpm1488)

This article is cited in 3 papers

Normalizers of Chevalley groups of type $G_2$ over local rings without $1/2$

E. I. Bunina, P. A. Veryovkin

Lomonosov Moscow State University, Moscow, Russia

Abstract: In this paper, we prove that every element of the linear group $\mathrm{GL}_{14} (R)$ normalizing the Chevalley group of type $G_2$ over a commutative local ring $R$ without $1/2$ belongs to this group up to some multiplier. This allows us to improve our classification of automorphisms of these Chevalley groups showing that an automorphism-conjugation can be replaced by an inner automorphism. Therefore, it is proved that every automorphism of a Chevalley group of type $G_2$ over a local ring without $1/2$ is a composition of a ring and an inner automorphisms.

UDC: 512.54


 English version:
Journal of Mathematical Sciences (New York), 2014, 201:4, 446–449

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025