RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2013 Volume 18, Issue 3, Pages 27–42 (Mi fpm1514)

This article is cited in 3 papers

The group of fractions of the semigroup of invertible nonnegative matrices of order three over a field

E. I. Bunina, V. V. Nemiro

Lomonosov Moscow State University, Moscow, Russia

Abstract: Let $\mathbb F$ be a linearly ordered field. Consider $\mathrm G_n(\mathbb F)$, which is the subsemigroup of $\mathrm{GL}_n(\mathbb F)$ consisting of all matrices with nonnegative coefficients. In 1940, A. I. Maltsev introduced the concept of the group of fractions for a semigroup. In the given paper, we prove that the group of fractions of $\mathrm G_3(\mathbb F)$ coincides with $\mathrm{GL}_3(\mathbb F)$.

UDC: 512.534.7+512.555.2


 English version:
Journal of Mathematical Sciences (New York), 2015, 206:5, 474–485

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025