RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2013 Volume 18, Issue 5, Pages 145–153 (Mi fpm1546)

This article is cited in 1 paper

Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set

V. G. Krotov, M. A. Prokhorovich

Belarusian State University, Minsk, Belarus

Abstract: We prove that for $p>1$ and $0<\alpha<n/p$ there exists a function from the Bessel potentials class $J_\alpha(L^p(\mathbb R^n))$ such that the Hausdorff dimension of its exceptional Lebesgue set is $n-\alpha p$. We also show that such a function may be taken from the Besov class $B^\alpha_{p,q}(\mathbb R^n)$ with any $q>0$.

UDC: 517.518.2


 English version:
Journal of Mathematical Sciences (New York), 2015, 209:1, 108–114

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024